Problem Set I: Due Thursday, January 15, 2015

- 1.) Determine the stable equilibrium positions for a simple pendulum which oscillates:
 - a.) horizontally, with $x = \chi_0 \cos \omega t$
 - b.) in a circle, with $x = r_0 \cos \omega t$, $y = r_0 \sin \omega t$.

Take $\omega >> \sqrt{g/\ell}$ and consider the full range of parameters.

- 2.) Now again consider a simple pendulum with support oscillating at $y = y_0 \cos \omega t$. If the pendulum has length ℓ (so $\omega_0 = \sqrt{g/\ell}$) and $\omega = 2\omega_0 + \epsilon$, determine the conditions for, and growth rate of, parametric instability.
- 3.) Compute the threshold for parametric instability in the presence of linear frictional damping, as well as mismatch. For what range of mismatch ∈ will instability occur?
- 4.) Let $H(q,p,t) = H_0(q,p) + V(q)d^2A/dt^2$ where A(t) is periodic, with period $\tau << T$. Here T is the period of the motion governed by H_0 .
 - a.) Derive the mean field (i.e. short time averaged) equations for this system.
 - b.) Show that these mean field equations may be obtained from the effective Hamiltonian

$$K(p,q) = H_0(p,q) + \frac{1}{4m} \left\langle \left(\frac{dA}{dt}\right)^2 \right\rangle \left(\frac{\partial V(q)}{\partial q}\right)^2.$$

Here <> means a short time average. You may assume $H_0 = p^2/2m + V_0(q)$.

- 5.) Consider the asymmetric top, with moments of inertia $I_1 < I_2 < I_3$. Here 1, 2, 3 refer to the principal axes in a frame for which the inertia tensor is diagonal. Using the Euler equations:
 - a.) Derive the equations of motion for $\Omega_1(t)$, $\Omega_2(t)$, $\Omega_3(t)$, the angular frequencies associated with axes 1, 2, 3.
 - b.) Show that if $\Omega_2 \cong \Omega_0$ while Ω_1 , Ω_2 start from an infinitesimal perturbation, instability results. Show that $\Omega_1 \cong \Omega_0$ or $\Omega_3 \cong \Omega_0$ is stable.
 - c.) What are the two conserved quantities which constrain the evolution in b.)?
- 6.) Consider a free nonlinear oscillator which satisfied the equation

$$\ddot{x} + \boldsymbol{\omega}_0^2 x = -\alpha x^2 - \beta x^3.$$

Use Poincare-Linstedt perturbation theory to calculate the non-linear frequency shift and lowest order non-trivial solution.